QUESTION 2010

Group – A (Multiple Choice Type Questions

Choose the correct alternatives for The value of log ₃ 27 is	or any ten of th	e following:	
a) 5		c) 4	d) 2
ii) If $P(n) = n^2 - n + 41$, $\forall n \in \mathbb{N}$ th	en $P(n)$ is	THE STATE OF THE S	
a) an even number ✓c) a prime number		b) a number di d) a number di	visible by 3 visible by 7
iii) If $lpha$ and eta are the roots of the	e equation $x^2 +$	-6x+2=0, then	the value of $\alpha^2 + \beta^2$ is
√a) 32 b) 30		c) 28	d) 2
iv) If A and B are any two sets then \checkmark a) ϕ b) B^c	$A \cap (A \cup B)$	190F	
\checkmark a) ϕ b) B^c	daba	c) A^c	d) <i>B</i>
v) If $A \propto B$, then a) $A^3 + B^2 \propto AB$ b) $A + B$	$B^2 \propto AB$	$A+B \propto A^2B$	\checkmark d) $A^2 + B^2 \propto AB$
vi) The slope of the straight line that	t is parallel to li	ne joining the point	is $(2,-1)$ and $(0,2)$ is
a) 1 b) $\frac{1}{3}$	1	c) $-\frac{1}{2}$	d) $\frac{1}{2}$
Correct answer is $-\frac{3}{2}$.	504 F		
	of win the even	ansign of (3)	7
vii) The term, which is independent	or x, in the exp	ansion of $\begin{pmatrix} x \\ x \end{pmatrix}$	IS
a) 4 b) -3 No correct alternative is given. There			
	A. 12		

POPULAR PUBLICATIONS

viii) The	Dumbaa						
	number	or subs	ets of a	set with	n elem	ents is	

a) 2n

√b) 2"

c) $\frac{n}{2}$

d) n^2

ix) The function $f(x) = x^2 - 2x + 2$ is a

a) Even function

b) Odd function

c) Both (a) & (b)

√d) Neither (a) nor (b)

x) π is a/an

a) natural number

b) rational number

√c) irrational number

d) complex number

xi) The number of ways in which 4 letters can be ported in 5 letter boxes is

√b) ⁵P₄

c) 54

d) ${}^5C_{\star}$

xii) The coordinates of the centroid of the triangle whose vertices are (2,0), (1,-3), (-3,3) is a) (2,1)

√b) (0,0)

c) (-1,3)

d) (2,4)

Group - B (Short Answer Type Questions)

2. If $x \propto y+z$, $y \propto z+x$ and $z \propto x+y$, then prove that $\frac{k}{l+1}+\frac{l}{l+1}+\frac{m}{m+1}=1$, where k, i, m are the constants of variation.

See Topic: RATIO, PROPORTION AND VARIATION, Short Answer Type Question No. 1.

3. Find the equation of the locus of a point such that the difference of its distances from the points (5,0) and (-5,0) is always 5 units.

See Topic: TWO DIMENSIONAL COORDINATE GEOMETRY, Short Answer Type Question No. 9.

4. Without using Venn Diagram prove that

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

See Topic: SETS, Short Answer Type Question No. 1.

5. Show that $7\log\left(\frac{10}{9}\right) - 2\log\left(\frac{25}{24}\right) + 3\log\left(\frac{81}{80}\right) = \log 2$.

See Topic: BASIC ALGEBRA, Short Answer Type Question No. 1.

6. In how many ways can the letters of the word "BALLOON" be arranged, so that two 'O's do not

See Topic: PERMUTATIONS AND COMBINATIONS, Short Answer Type Question No. 5.

Group - C (Long Answer Type Questions)

7. a) If α and β are the roots of the equation $2x^2-4x+1=0$, then form such an equation, whose roots are $\alpha^2 + \beta$ and $\beta^2 + \alpha$.

See Topic: THEORY OF QUADRATIC EQUATION, Long Answer Type Question No. 10.

b) Show that
$$\frac{1}{1 + \log_x yz} + \frac{1}{1 + \log_y zx} + \frac{1}{1 + \log_z xy} = 1$$

See Topic: BASIC ALGEBRA, Long Answer Type Question No. 16.

c) Find the sum of series

 $1.2 + 2.3 + 3.4 + \dots + upto n terms$.

See Topic: SEQUENCES & SERIES, Long Answer Type Question No. 9.

8. a) Find the locus of the point, the ratio of whose distances from the line x=2 and from the point (5,-1) is 3:2.

See Topic: TWO DIMENSIONAL COORDINATE GEOMETRY, Long Answer Type Question No. 11.

b) If the coefficient of x^3 in the expansion of $\left(x^2 + \frac{k}{x}\right)^6$ be 160, find the value of k.

See Topic: MATHEMATICAL INDUCTION & BINOMIAL THEOREM, Short Answer Type **Question No. 4.**

c) Find the equation of the circle through the points (4,3) and (-2,5) and having its centre on the line 2x-3y=4.

See Topic: TWO DIMENSIONAL COORDINATE GEOMETRY, Long Answer Type Question No. 12.

- 9. a) What is the present value of Rs. 1,000 due in 2 years at 5% compound interest according as the interest is paid
 - yearly i)
 - half-vearly.

See Topic: COMPOUND INTEREST AND ANNUITY, Long Answer Type Question No. 2.

b) Apply the principle of mathematical induction to prove,

$$\frac{1}{4.7} + \frac{1}{7.10} + \frac{1}{10.13} + \dots + \frac{1}{(3n+1)(3n+4)} = \frac{n}{4(3n+4)}.$$

See Topic: MATHEMATICAL INDUCTION & BINOMIAL THEOREM, Long Answer Type Question No. 5.

c) Solve for $x: 2^{x+2} + 2^{x-1} = 9$.

See Topic: BASIC ALGEBRA, Long Answer Type Question No. 17.

10. a) Find the sum of the series 5+55+555+... upto n terms. See Topic: SEQUENCES & SERIES, Long Answer Type Question No. 10.

b) Find the square root of $12 - \sqrt{68 + 48\sqrt{2}}$.

- YEAR PUBLICATIONS

See Topic: BASIC ALGEBRA, Long Answer Type Question No. 18.

c) Prove that the three points (-2,-2), (2,2) and $(-2\sqrt{3},2\sqrt{3})$ are vertices of equilateral triangle. Find the area of the triangle. See Topic: TWO DIMENSIONAL COORDINATE GEOMETRY, Long Answer Type Question No. 13.

11. a) In a class of 50 students, 15 read physics, 20 read chemistry, 20 read mathematics, 3 read physics & chemistry, 6 read chemistry & mathematics and 5 read physics & mathematics, 7 read none of the subject. How many students read all the subjects? See Topics SETS, Long Answer Type Question No. 9.

- b) Find the total number of arrangements of the letters of the word "STATISTICS" when
 - i) there is no restriction
 - ii) the vowels remain together
- iii) order of the vowels remain unchanged.

 See Topic: PERMUTATIONS AND COMBINATIONS, Long Answer Type Question No. 2.